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The ribbing instability, an extremely common cause of non-uniform liquid films in 
coating operations, is investigated both theoretically and experimentally. The 
Navier-Stokes system for the two-dimensional flow in symmetric film-splitting in 
forward roll coating is solved by finite-element analysis. Stability of the flow with 
respect to three-dimensional disturbances is examined by applying linear stability 
theory in a consistent finite-element approach, taking Fourier components in the 
transverse direction. The resulting generalized asymmetric eigenproblem is solved 
for the growth rates of disturbances as functions of wavenumber. The theory 
accurately predicts the critical capillary number and wavenumber a t  the transition 
to large-amplitude ribs. A sensitive experimental technique for detecting the ribs was 
developed that relies on low-angle reflection of a focused strip of white light off the 
meniscus between the rolls. This allowed detection of much smaller amplitude ribs, 
and much smaller critical capillary numbers were measured. The results indicate that 
the transition to ribbing is an imperfect bifurcation due to  end effects, and clarify 
earlier discordances in the literature. 

1. Introduction 
When a thin liquid layer is coated onto a solid substrate or flexible web.by a 

process of brushing, spreading, or rolling, the end result often is not a uniform film, 
but instead one with a corduroy or ribbed pattern as shown in figure 1.  If the 
viscosity is too high or the speed is too fast, the film profile transverse to  the direction 
of coating is wavy; the crests and troughs run in the coating direction. This 
behaviour is a result of a flow instability that is commonly called ribbing. 

This paper examines the ribbing instability in the case of symmetric film-splitting 
in forward roll coating when the rolls are half-submerged. In  this process two rolls of 
equal radii (R) are held a t  a fixed minimum surface separation (2H,)  and are rotated 
such that the surface speeds in the gap region are equal and in the same direction. 
(Rolls turning a t  different rates or of different radii also find applications but are not 
treated here.) Upstream of the gap is ‘flooded ’, i.e. there is an infinite supply of liquid 
and no free surface, whereas downstream the liquid layer carried through the gap 
splits to  form two films, each coating one of the roll surfaces. It is under the free 
surface where the film splits that the flow is susceptible to  ribbing, which is 
characterized by sinusoidal variations in the transverse direction (parallel to the roll 
axes). The appearance of ribbing indicates that the two-dimensional, steady-state 

t Current address : General Electric Company, Corporate Research and Development, 
Schenectady, NY 12301, USA. 
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FIQURE 1. Photograph of the ribbing instability in symmetric film-splitting between 
half-submerged counter-rotating cylinders. 

flows calculated previously (Coyle, Macosko & Scriven 1986) are not always unique 
or stable. At issue, then, are the regions in the space of relevant parameters where 
the two-dimensional flows are stable, and, more immediately, the boundary between 
these uniform-film flows and the ribbed flows. This boundary is the locus of points 
where three-dimensional ribbed flows bifurcate from the two-dimensional uniform- 
film flows. Our approach is both theoretical and experimental. The theory is a finite- 
element linear stability analysis of three-dimensional disturbances to the two- 
dimensional base flow. The experiments include careful visual observations of free- 
surface topography, both in the way used by previous researchers and by a more 
sensitive visualization technique. 

There has been considerable interest in the phenomenon of ribbing from both 
scientific and technological points of view. This work has recently been reviewed by 
Ruschak (1985). The analysis of ribbing necessarily starts from a mathematical 
description of the unperturbed base state, a steady, two-dimensional viscous free- 
surface flow. Taylor (1963) pointed out how the steady-state flow naturally 
decomposes into two regions : a two-dimensional flow near the meniscus and a one- 
dimensional nearly rectilinear flow (sometimes referred to as ‘lubrication flow ’) 
upstream. Ruschak (1982) formalized this approach by means of the method of 
matched asymptotic expansions, after which he solved for the two-dimensional inner 
solution at and near the free surface with the finite-element method. Coyle et al. 
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(1986) calculated the full two-dimensional flow field and quantified the limits of 
applicability of the asymptotic analysis. 

The mechanism by which this flow becomes unstable can be grasped qualitatively 
from an argument that dates back to Pearson (1960) and Pitts & Greiller (1961). In  
the flow two major forces are in competition: capillary pressure arising from the 
action of surface tension in a curved meniscus ; and a pressure force arising from the 
action of viscosity in a passage of slowly varying width, the well-known mechanism 
of hydrodynamic lubrication. Two dimensionless parameters pertain to the situation : 
the capillary number Ca = p V / v  (p is viscosity, V is roll surface speed, and v is the 
surface tension), which measures the ratio of viscous and surface-tension forces, and 
the geometric factor H,/R (H ,  is the half-gap width between two rolls of radius R) ,  
to which the slope between roll surfaces is proportional. 

Saffman & Taylor (1958), in analysing the viscous fingering instability in 
displacement of liquid by gas between parallel walls (a Hele-Shaw cell), used a 
rectilinear flow approximation to show that the flow is unstable if the pressure 
gradient is greater in the fluid phase being displaced, as is always the case when the 
less viscous fluid displaces the more viscous (see Ruschak 1983). Pearson (1960) and 
Pitts & Greiller (1961), in analysing the ribbing instability of flows under wedge- 
spreaders and rollers, showed how a stabilizing influence of capillary pressure arises 
when the meniscus between liquid and gas is located between diverging walls: the 
meniscus becomes less curved when it  shifts towards the gas, and vice versa. In 
addition, the diverging geometry modifies the destabilizing pressure gradient from 
its counterpart in the displacement flow of Hele-Shaw type. Lacking a set of 
boundary conditions for the film-splitting region, Pearson could determine neither 
the steady-state meniscus location nor the flow rate, and thus could not derive a 
specific stability criterion. Pitts & Greiller approximated t'he force balance a t  the 
perturbed meniscus to produce the intuitively appealing criterion that the flow 
becomes unstable if the pressure gradient in the liquid exceeds a certain value: 

3 > L['!?,,vI. 
dx Ga r2dx 

Here r is the radius of curvature of the meniscus in the plane perpendicular to the roll 
axes, x is the primary flow direction (i.e. the direction of wall movement), p is the 
pressure, and N is the transverse wavenumber of the insipient ribbing represented as 
a sinusoidal perturbation. With numerous simplifying assumptions, they arrived a t  
the stability criterion Ca < 28 (H,/R). According to ( l ) ,  surface tension is always a 
stabilizing influence, which is greater the higher the frequency of insipient ribbing 
(i.e. the shorter the wavelength). If the pressure gradient in thc liquid is negative, i.e. 
pressure decreases in the downstream direction, the flow is always stable. If the 
pressure gradient is positive, the flow can be either stable or unstable, depending on 
the relative magnitude of the pressure gradient in the liquid and the variation of 
capillary pressure with meniscus location, which is proportional to surface tension 
and the local diverging angle of the roll surfaces. 

Savage's (1977b, 1984) approach (see also Greener 1979 and Gokhale 1983a, b ) ,  in 
contrast to Pearson's classical linear stability analysis, was to search for necessary 
conditions for steady ribbing to be a solution to the equations of nearly rectilinear 
flow. They examined a number of ad hoc boundary conditions at the meniscus for the 
nearly rectilinear steady flow and the resulting stability criterion. The disturbing 
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feature of this work is that a prediction of the onset of instability in better accord 
with then-available data was obtained by using an inferior flow model. In particular, 
Savage’s earlier work which gave poor predictions (see Greener 1979), used flow 
boundary conditions a t  a free surface that were proposed by Coyne & Elrod (1970) 
and later shown by Ruschak (1982) to be the best of the approximate models that 
have been used with lubrication theory. 

The most acceptable analysis of ribbing to date is that of Ruschak (1983, 1985), 
who used the nearly rectilinear flow linear stability analysis of Pearson but applied 
boundary conditions derived from the results of his own solution to the asymptotic 
equations of two-dimensional flow near the meniscus. His predictions of ribbing onset 
compare well with published observations a t  small ratios of gap half-width to roll 
radius (H, /R) .  The predictions cannot be expected to be accurate over the entire 
range of parameters for which observations have been published. The asymptotic 
approximations of the base flow lose accuracy as the gap widens or the capillary 
number falls. Moreover, the stability analysis loses accuracy as the wavenumber 
increases (high-frequency incipient ribbing). 

Accurate predictions of stability require accurate theoretical analysis of both the 
base state and the response to three-dimensional disturbances of small amplitude. As 
Ruschak (1985) emphasized, simplifications in these analyses cast doubt on the 
validity of their results and in turn ‘. . . the ad-hoc boundary conditions become as 
much a subject of attention as the original problem ’. 

The later sections of this paper deal with the means and outcome of making 
accurate predictions. But first we address a related problem : How accurate are the 
observations of the ‘onset of ribbing’! 

2. Experimental determination of the onset of ribbing 
The onset of ribbing in symmetric film-splitting was studied by Pitts & Greiller 

(1961), Mill & South (1967), Greener et al. (1980), and Benkreira, Edwards & 
Wilkinson (1982). All of these investigators relied on the unaided eye to detect the 
first appearance of ribbing. Their results are seemingly discordant, : the critical 
capillary number as reported by the four respective groups is 

Ca = 62@)1, 1’7.3($), H f  7500@y, 13.5@),. 

The most likely reason for the discrepancies lies in the subjective nature of 
discriminating between uniformity and non-uniformity of a small meniscus deep 
within the narrow gap between two cylinders. As the experimenter increases the roll 
speed (over a range of as much as a factor of 2 to  5) he sees a gradual transition from 
an apparently smooth (no curvature in the transverse direction) meniscus to a wavy 
one, but the waves that are first apparent are small in amplitude: moreover their 
wavelength is long compared to the gap width a t  the meniscus. That width is usually 
so small (50-250 pm) as to make it difficult to observe the meniscus itself, let alone 
any minute distortions along its length. Another possible source of discrepa.ncies is 
that the rolls used by Benkreira et al. (1982) were mounted one above the other, 
rather than side-by-side, so that gravity did not act in the same direction and the 
upstream of the gap was not submerged in liquid as was the case in all the other 
experiments. 

To establish a basis for comparison, we did experiments to determine the onset of 
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Projector 
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FIQURE 2. Schematic drawing of the experimental two-roll apparatus and the light-reflection 
system to detect small-amplitude ribs (side view). 

ribbing by careful naked-eye viewing of the meniscus in much the same way as 
previous investigators. Then, in an attempt to resolve uncertainties, we tried various 
improved detection techniques and settled on one of much greater sensitivity, 
depicted in figure 2. A focused sheet of white light is produced by a 1 mm gap 
between the sharp edges of two razor blades fixed in a standard 35 mm slide mount. 
This light sheet, whose intersection with a plane is a narrow line segment, is reflected 
a t  a glancing angle off the meniscus between the cylinders. The light sheet travels 
parallel to the cylinder axis, strikes a 3-10 cm length of the meniscus, and is reflected 
onto a plate of opal glass. At low surface speeds of the cylinders, the image it makes 
is a curved patch of uniform intensity because the meniscus is uniform along its 
length. The image is not a line segment because the curvature of the meniscus 
perpendicular to the roll axis spreads the narrow sheet of light. At a certain higher 
speed the patch, as viewed by naked eye, distorts into alternating light and dark 
bands caused by a slight waviness of the meniscus. At this juncture the waviness 
itself cannot be detected with the naked eye. The speed is much less than reported 
by earlier investigators. 

In  this manner the critical capillary number a t  the onset of ribbing was measured 
for Newtonian glycerine/water solutions. Both 7.6 cm and 20.3 cm diameter roll 
pairs were used, each roll ground and mounted in bearings so that the total indicated 
runout (TIR) was less than 2.5 pm and driven a t  speed constant to  within +0.25%. 
The roll pairs were 15.2 and 30.5 cm long, respectively. Viscosity was varied from 0.1 
to 0.8 Pa s and the gap between the rolls ranged from 25 to 1250 pm. This gap range 
allowed overlap in the gap/diameter ratio (H, /R)  between measurements taken on 
the two different apparatus. 

It should be noted that the chosen detection technique is still subjective because 
the light pattern must be viewed with the naked eye in order to judge the onset of 
ribbing. I ts  big advantage is that the light pattern is large and easy to observe, and 
the transition is sharp and dramatic. This makes the measurement simple, and 
choosing an incident light angle of only 10'-15" allows the detection of much smaller 
amplitude waves than. is possible with naked-eye observations. 
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3. Stability analysis 
The advent of computers and sophisticated computer-based schemes for solving 

partial differential equations has made it possible to analyse complicated fluid flows 
with considerable rigour. Finite-element analysis, as summarized by Kistler & 
Scriven (l983), has proved a powerful tool for predicting steady, viscous free-surface 
flows. Moreover, the stability of these flows can be predicted with linear stability 
theory combined with finite-element techniques developed by Ruschak (1 983) and 
Bixler (1982). It is no longer necessary to use the lubrication approximation along 
with ad hoc boundary conditions. 

3.1. Formulation 

The first step in linear stability analysis is to perturb the steady-state flow with an 
infinitesimal disturbance. The disturbance is represented by Fourier modes in the 
transverse ( z )  direction ; so the velocities, pressure, and free-surface parameters are 
written as u(x, y, 2, t )  = u"(x, y) + E U ' ( X ,  y).D(Nz) ePt, 

p ( s ,  y, 2, t )  = p 0 ( z ,  y) + &(x, y) cos (Nz) efltt, 

(3) 

(4) 

h ( t , z , t )  = hO(~)+.chl(~)cos(Nz)&t, (5) 

where D = cos (Nz)  (i i+j) + sin (Nz) kk, N is the transverse wavenumber of the 
disturbance (N = 2xH0/h,  A is the wavelength) and /3 is its growth factor. The base 
flow (u", PO, and h") is found by solving the equations of steady two-dimensional flow 
(see Coyle et al. 1986), and the x- and y-components of the disturbance are expanded 
in the same set of finitc-clement basis functions as used to  represent the base flow. 

The next step is to require that the three-dimensional unsteady flow field (3)-(5) 
satisfy the equations of motion throughout the domain sketched in figure 3 :  

(6) 

0 = v * u  (7)  

(8) 

su 
st R e - =  -Reu-Wu+W.T+Stf ,  

6X 
st 

n * - = n - u (free surface). 

Inertia, as indicated by the Reynolds number Re = pVH, /p ,  and gravity, as 
indicated by the Stokes number St = pgH:/,uV, are included. For the cases of interest 
here, the unit vector f points in the negative x-direction (cf. figures 1,3). T is the total 
stress tensor ( - p a +  Wu + WuT), n is the unit normal vector of the free surface, and 
x is the position of the free surface. Galerkin weighted residuals are formed using the 
basis functions @(x, y) D(Nz) as the weighting functions. Each weighted residual of 
the momentum equation is integrated by parts using the divergence theorem. The 
domain of integration (see figure 3) is the two-dimensional flow domain extended 
over one wavelength in the z-direction. The expressions for the flow field (equations 
(3)-(5)) are inserted in the volume integral of the weighted residual and the result is 
linearized with respect to E .  I n  the resulting equations for the vanishing of each 
weighted residual, the only z-dependence that remains is in factors of cos2(Nz) or 
sin2 (Nz),  either of which integrates analytically to produce a common factor of in. 
There is also a common factor of ebt. 
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FIGURE 3. Definition sketch of the domain of the theoretical analysis, depicting various parts of 
its bounding surfaces. 

Differentiating each of the equations with respect to the finite-element coefficients 
of the disturbance (zi', p', h )  results in the generalized asymmetric eigenproblem : 

where q is the column vector of coefficients [u', d, w', p ' ,  h'IT, M is a singular matrix 
of basis function overlaps (sometimes referred to as the mass matrix) arising from the 
time-dependence, and J is the Jacobian matrix. 

The three basic parts of the Jacobian arise from the right-hand sides of the 
momentum equation (6), the continuity equation (7) ,  and the kinematic equation (8). 
The structure of the Jacobian with all the entries summarized is given in the 
Appendix. Care is needed in deriving formulae for the Jacobian entries because the 
mapping of the elements underneath the free surfaces onto a fixed domain depends 
on the disturbance itself and therefore so too do quantities such as spatial derivatives 
and the Jacobian of the element mappings. Such quantities are obtained through the 
isoparametric map, the chain rule, and the mesh-generation algorithm used in a 
particular flow problem. Examination of the Appendix shows that most of the 
Jacobian matrix entries in the stability analysis are identical to those in the Jacobian 
formed in solving the base flow by Newton iteration. The only additional terms stem 
from Tzz, T,,, and T,,, terms that are zero in the base flow but not in the stability 
equations. These extra terms are proportional to either N or N 2 .  

The boundary integral jn. TdT in each equation for the vanishing of a 
momentum weighted residual has six distinct parts (see figure 3):  (i) solid surfaces, 
(ii) edge boundaries (the planes z = 0 and z = 27c/N), (i i i)  symmetry planes, (iv) 
inflow boundaries, (v) outflow boundaries, and (vi) free surfaces. Boundary conditions 
of no slip and no penetration apply at solid surfaces, and because these are essential 
conditions they replace the weighted residual equations there. Because the domain 
width is chosen as one wavelength ( 2 n / N ) ,  the boundary integral over the edge 
boundaries drops out by virtue of cancellation of contributions from opposing edges. 
The boundary integral over the symmetry planes drops out because on them n. T = 
0. Inflow boundary conditions are either no perturbation in the velocities or no 
perturbation in the traction. Zero traction is imposed a t  the outflow plane. 

The last remaining part of the boundary is the free surface, where the shear stress 
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is negligible and the normal stress must balance the capillary pressure, which is 
proportional to the surface tension and the mean curvature of the free surface : 

(10) 

Here the curvature of the surface is written as the surface divergence of the unit 
normal vector field, which in turn can be represented over the boundary of each 
element on the free surface in terms of the local isoparametric map. The surface 
divergence theorem (Weatherburn 1929) is used to reduce the order of the derivatives 
in the boundary integral, leading to the boundary condition that the slope of the 
disturbance approaches zero a t  the outflow of the computational domain. Here 
again, the Jacobian entries differ only in minor ways from those of the steady-flow 
calculation. 

The mass matrix consists of two terms. The first arises from the momentum 
equations; it is proportional to Reynolds number and is detailed by Bixler (1982). It 
is not shown in the Appendix because it is negligible, and is dropped in an 
approximation that is discussed later. The other contribution to  this matrix arises 
from the time-dependent portion of the kinematic boundary condition, (8). This 
boundary condition states that the velocity of the free surface (proportional to time 
derivatives of the free-surface parameters h) is equal to the velocity of the fluid 
underneath it (u, v ,  w). Because both sets of quantities are of order e in the z-direction 
and dot products are being formed, the z-dimension enters first at O(e2) and only the 
two-dimensional forms need be considered. 

1 
n - T  = -(V 11.n)n. Ca 

3.2. Solution 
Once the finite-element equations are constructed and the Jacobian and mass matrix 
are both evaluated, the generalized asymmetric eigenproblem must be solved for its 
eigenvalues, the exponential growth factors pi, and its eigenvectors, their associated 
modes qt, all as functions of the transverse wavenumber N .  Because the rank of M 
is typically on the order of 1000-6000 (the total number of momentum, continuity, 
and kinematic-weighted residual equations), special techniques are required. Bixler 
(1982) adapted a method developed by Stewart (1978) to compute the most 
dangerous subspace of eigenfunctions. An alternative to this iterative calculation of 
the dominant subspace of the complete eigenproblem is Ruschak’s (1983) approach, 
which is adopted here. He neglected the time derivatives in the momentum 
equations, an approximation that is accurate if the timescale of the disturbance is 
long compared to that of the base flow. It is probably adequate here because the flows 
of interest have Reynolds numbers less than 0.001. Furthermore, if the instability of 
interest is not oscillatory in time, then the imaginary part of the eigenvalue is zero. 
Then through the condition of neutral stability the real part too is zero, and so a zero 
multiplies M in (8). Thus the calculation of marginal stability is completely 
independent of any approximations used in evaluating M, no matter how large the 
Reynolds number is. The only time derivatives that remain arise from the kinematic 
boundary condition ; thus the dimension of the eigenproblem is reduced to the order 
of 10-100 and standard algorithms for solving small eigenproblems can be used. This 
makes the cost of the eigenproblem solution less than 10% of the total computer 
time. 

3.3. Computation 
Initial computations on a coarse mesh were done on a Cray-1 computer, final results 
on an IBM 3081 computer. Gauss elimination was performed by a modified version 
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FIGURE 4. Finite-element discretizations used in calculating the stability of two-dimensional 
symmetric film-splitting to ribbing a t  (a) H,JR = 0.000 125, (b) H,JR = 0.025, and (c) H,JR = 0.025 
with extended upstream region. 

of Hood’s ( 1976) frontal solver, while eigenvalues and eigenvectors were calculated 
by the IMSL routine ‘ EIGZF ’. Computations of the steady two-dimensional base 
flows typically took 60 cpu s and 3 megabytes of memory (ca. 3900 unknowns, 3 
Newton iterations to converge). Computation of the stability of the base flow a t  one 
wavenumber typically took 45 c.p.u.s and 6 megabytes of memory (ca. 5600 
unknowns, 45 eigenpairs). 

For each set of parameters (H,,/R, Re, Ca, S t ) ,  eigenvalues were computed over a 
range of wavenumbers to see if any of them had positive real part, i.e. corresponded 
to an unstable mode. For a given H,/R (fixed gap), the eigenvalue of the most 
dangerous mode was plotted against wavenumber with Ca as a parameter. Most 
dangerous mode refers to that eigenfunction whose eigenvalue has the largest real 
part and thus would have the fastest exponential growth rate (or the slowest decay 
rate). For the film-splitting problem, the most dangerous modes were always real. 

4. Results and discussion 
The results were obtained with discretizations such as are shown in figure 4. The 

sensitivity of base flows and eigenvalues to the refinement of the discretization were 
tested by repeating the computations with more elements and by moving the 
location of the upstream boundary further upstream. The refinement shown in figure 
4(a,  6 )  was sufficient to determine the critical capillary number and wavenumber 
both to within at least 1%. Figure 4(c) is an example of a mesh extended far 
upstream to ensure the same insensitivity of the results to the location of the inlet 
boundary. 

4.1. Stability of the most dangerous mode 
The computed eigenvalue of the most dangerous mode as a function of capillary 
number and gapldiameter ratio is shown in figure 5.  At low capillary numbers, the 
base flow is stable to all modes, but a t  high capillary numbers, there are unstable 
modes of non-zero wavenumber. At an intermediate capillary number, the curve of 
eigenvalue versus wavenumber is tangent to the x-axis, the condition that defines the 
critical capillary number and wavenumber a t  the onset of ribbing. The results show 
that at  narrower gaps between the rolls the flow becomes unstable a t  lower capillary 
number, and to transverse standing waves, or ribs, that are long compared to the gap 

16.9 
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FIGURE 5. Calculated eigenvalues of the most dangerous mode as a function of wavenumber 
and capillary number a t  (a) H,/R = 0.000 125, and (6) H , / R  = 0.025 (Re = St = 0). 

(i.e. the narrower the gap, the smaller is N ) .  The free-surface component of one such 
mode is shown in figure 6, along with the disturbed flow pattern near the free surface. 
The sinusoidal disturbance is greatest near the symmetry plane and decays rapidly 
downstream. Each rib contains a pair of vortices in which liquid rotates such that the 
flow wells up to the free surface under the crest of the rib and descends under the 
trough. Except a t  the symmetry plane, there is a strong downstream velocity 
component superimposed on the circulatory flow : consequently fluid elements move 
downstream in helical trajectories under the ribs. 
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t- One rib -I 

.f- 
FIGURE 6. Calculated eigenvector of the most dangerous mode at the neutral stability point 

(onset of ribbing) at H o / R  = 0.005 (Re = St = 0). 

HOIR 
0.000 125 
0.000 333 
0.001 
0.002 
0.005 
0.0125 
0.020 
0.025 

Ca 

0.031 
0.050 
0.094 
0.150 
0.32 
0.96 
2.7 
7.0 

N 

0.008 7 
0.016 
0.034 
0.055 
0.105 
0.20 
0.29 
0.34 

WHO 
722 
393 
185 
114 
60 
31 
22 
18 

AIR 
0.090 
0.131 
0.185 
0.228 
0.299 
0.393 
0.433 
0.462 

a 

6.3 
8.8 

12.9 
16.3 
22.2 
30.2 
35.8 
39.2 

TABLE 1 .  Critical conditions for the onset of ribbing as computed by finite-element-based linear 
stability theory 

The plots of the eigenvalue of the most dangerous mode p vs. the transverse 
wavenumber N can be used to determine the critical capillary number for the onset 
of ribbing a t  several gapldiameter ratios (H,/R) ,  as recorded in table 1. The 
diverging angle a between the roll surfaces a t  the point where the meniscus forms is 
also recorded. As discussed by Ruschak (1985), increasing a stabilizes the flow with 
respect, to ribbing, resulting in much higher values of the critical capillary number. 

The effect of gravity, acting in the direction from the meniscus towards the gap 
(figure i ) ,  is to stabilize the flow. The relevant dimensionless group is the Stokes 
number, which can be arranged into the form 

The results of calculations a t  two values of gapldiameter ratio are reported in table 
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H Q / R  St Ca a N ‘ I H ,  
0.000 125 0 0.031 6.32 0.008 7 722 
0.000 125 0.001 0.031 6.33 
0.000 125 0.001 0.033 6.22 0.009 1 690 

0.005 0 0.32 22.2 0.105 60 
0.005 0.05 0.32 22.7 
0.005 0.05 0.83 19.8 0.15 42 

- - 

- - 

TABLE 2. Effect of gravity on computed steady flows and critical conditions for the onset of 
ribbing (Re = 0) 

HOIR RP CCL a N WHO 
0.000 125 0 0.031 6.32 0.008 7 722 
0.000 125 1 0.031 6.40 
0.000 125 1 0.029 6.52 0.0084 748 

0.005 0 0.32 22.1 0.104 60 
0.005 1 0.32 23.0 
0.005 1 0.345 22.1 0.100 63 

__ - 

- ~ 

TABLE 3. Effect of inertia on computed steady flows and critical conditions for the onset of 
ribbing (St = 0) 

2, where values of St are approximately 5-10 times those typical for our experiments. 
Increasing the Stokes number causes the meniscus to move farther out of the gap, 
increasing a and thus apparently stabilizing the flow field, but the magnitude of this 
change is small. This same increase in St results in a significant stabilization of the 
flow as measured by the marked increase in the critical capillary number. This 
indicates that the primary influence of gravity enters through the perturbation 
equations rather than by simply shifting the steady-state meniscus position. 

The effect of inertia, as measured by the Reynolds number, 

is more complex. Results of calculations a t  R e  = 1 are reported in table 3 ;  values of 
Re < 0.01 are typical in our experiments with relatively viscous liquids. Increasing 
the Reynolds number causes the meniscus to relocate to a point of larger a, thus 
apparently stabilizing the flow field. But the primary effect of inertia is to stabilize 
short-wavelength disturbances and to destabilize long-wavelength ones. (Here the 
length is measured relative to the gap : see table 3.) At large gaps the shorter waves 
correspond to the most dangerous modes and so the flow is stabilized with respect to 
ribbing. Conversely, a t  small gaps the longer waves correspond to the most dangerous 
modes and so the flow is destabilized. Thus the effect of inertia on the stability of the 
flow depends, through the perturbation equations, upon the wavelength of the most 
dangerous mode. The magnitude of this effect is small, so that i t  might only be 
observed in experiments with liquids of viscosity less than 0.1 Pa s. 

The effects of inertia and gravity are interesting and could be significant under 
certain experimental conditions. Both are insignificant a t  the conditions of the 
experiments with which we wish to compare our theory, and so are not considered 
further. 
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4.2. Comparison with previous theory and experiment 
This full theoretical analysis of the onset of ribbing predicts that the flow is more 
stable to ribbing than had previously been estimated by means of lubrication theory 
(see Pitts & Greiller 1961 ; Greener et al. 1980). As shown in figure 7, Ruschak’s (1985) 
analysis, reviewed above, predicts a stability limit only slightly lower than the 
current analysis, with the two theoretical results becoming indistinguishable a t  small 
gaps (H,/R < 0.001). The reason is that a t  the film-split meniscus location the 
diverging angle of the roll surfaces (table 1) is small enough that the rectilinear flow 
approximations used by Ruschak in both steady flow and stability analyses are 
accurate. Even where the diverging angle is not small, the asymptotic analysis 
predicts critical capillary numbers which are within 20% of those predicted by the 
full theory. 

I n  figure 7 are also plotted all previously published naked-8:ye measurements of the 
onset of ribbing. Plainly the values of the critical capillary number reported by all 
investigators, including ourselves, scatter yet agree within the experimental 
uncertainty. Examining the data in this manner, rather than by simply comparing 
published curves fitting the data, leads to the conclusion that the measurements of 
the previous investigators were never in disagreement. With the exception of four 
stray points, a continuous curved band of data points extends from H,/R = 0.9004 
to Ho/R = 0.035, and the slope of this band rises from a a t  small gaps to about 2 or 
3 at large gaps. Furthermore, the theoretically predicted curve passes through the 
middle of this band for the entire two orders of magnitude of gapldiameter ratio. 

Figure 8 shows the wavelength of the ribbing disturbance as a function of 
gapldiameter ratio H,/R.  The prediction is in agreement with experimental results 
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of Mill & South (1967) and the current work. The wavelength at  the onset of ribbing 
can be a significant fraction of the roll radius: i t  varies from 10% at small gap to 
50% at  large gap. Because the length of the rolls used in the various experimental 
apparatuses ranged from 2-8 times the roll radius, at the onset of ribbing the 
wavelength of the ribs is a significant fraction of the roll length. Near the onset, the 
wavelength shortens rapidly as the capillary number increases. This is in contrast to 
the high-capillary-number regime, where the capillary number is at least 2.5 times 
the critical value and the wavelength is no longer sensitive to changes in the capillary 
number. As shown in figure 8, here wavelengths are generally 5 times shorter than 
a t  the onset and are thus small compared to both the roll radius and length. 

The critical capillary number measured in the new experiments using the glancing 
angle reflection of a sheet of light off of the meniscus are shown alongside ail other 
results in figure 7.  This technique is capable of detecting much smaller amplitude 
waves on the meniscus than can be detected by the usual naked-eye observations. 
The amplitude of these waves is estimated to  be on the order of 5 pm, based on 
calculation of the amplitude of a sinusoidal wave on the meniscus that would deflect 
a light ray striking the opal glass by 1-5 mm. The results of these measurements 
indicate that the more sensitive the observation technique, the lower the measured 
value of the critical capillary number. Critical capillary numbers measured in this 
manner are roughly a factor of five lower than those measured with the naked eye. 
Experimental observations indicate that a t  these low capillary numbers the 
amplitude of the waves is small ( - 5  pm) and increases very slowly with increasing 
capillary number. At capillary numbers near the apparent onset of ribbing as 
determined by the naked eye the amplitude becomes large enough for the waves to 
be plainly visible and becomes very sensitive to the capillary number. The light 
pattern at low capillary number is steady, indicating that a standing wave pattern 
is being observed and the observations are not an artifact introduced by mechanical 
vibrations or roll runout. The opal glass can be removed and the meniscus viewed 
with the naked eye at  low angle. With this intense low-angle focused illumination, 
several wave crests are visible as regularly spaced bright spots along the illuminated 
section of the meniscus. These waves are not otherwise visible. 
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4.3. The nature of the instability 
All of these observations and their relation to the theoretical predictions indicate 
that the instability is an ‘imperfect’ or ‘perturbed’ bifurcation (cf. Iooss & Joseph 
1980; Keener & Keller 1973). The theoretical predictions are of onset of instability 
of a two-dimensional base flow, the onset marking bifurcation to a three-dimensional 
ribbed state. The base flow in the experiments is not two-dimensional, however. The 
rolls have ends. 

At the roll ends the free surface of the liquid bends into a three-dimensional shape 
that joins the edges of the two liquid films that the rolls carry away from the film- 
split zone, the meniscus a t  the film-split, and the edge of the liquid carried into and 
through the gap between rolls. This last edge is a meniscus that widens into the free 
surface of the liquid beneath, in the pool in which the two rolls are half-submerged 
(obscured from view in figure 1 ) .  The three-dimensional shape a t  each roll end is such 
that the part of it between the rolls has the form of a standing wave from which 
emanates a rib in each film, i.e. a thickening of each film near its edge. The rib is made 
evident by a highlight in the photograph, figure 9 ( a ) ,  which is of one end of the two- 
roll apparatus operating a t  the relatively low capillary number ( p V / r )  of 0.25. As the 
capillary number is increased, in this case by raising the roll speed, the rib grows 
sharper and thicker (figure 9b) ,  and a second rib grows alongside it to detectable 
amplitude. As the capillary number is increased further, a whole family of ribs comes 
into view, as pictured in figure 9(c) .  The rib a t  the roll end is invariably the thickest, 
and the amplitudes of the others fall off with distance from the nearest roll end. Of 
course the roll speed or capillary number a t  which each successive rib becomes 
detectable depends strongly on the illumination and magnification employed, as 
detailed above. 

Thus the base flow is made three-dimensional by the end effect. The evidence is 
that end ribs are always present in the base flow and are members of a whole family 
of ribs whose amplitude a t  low capillary number falls off so rapidly with distance 
from the end that they are too faint to detect. Near the capillary number a t  which 
theory predicts that a two-dimensional base flow would turn unstable and bifurcate 
to a ribbed state, the whole family of already existing ribs grow rapidly in amplitude 
as the capillary number is raised just a little. Moreover, when the capillary number 
is lowered, the ribs diminish in amplitude over the same capillary-number range. 
There is no discernible hysteresis : the transition though not abrupt seems reversible. 

To predict quantitatively the details of the imperfect bifurcation would require 
solving the fully three-dimensional steady flow problem of which (6)-(8) are the chief 
equations. Doing so was beyond the scope of this research. An idea of the details can 
be drawn from experimental and theoretical analysis of an analogous flow, however. 

The analogy is circular Couette flow in the annulus between concentric cylinders, 
the inner of which is rotated (Taylor 1923). Taylor’s early stability analysis pertained 
to the axisymmetric, two-dimensional flow that infinitely long cylinders would allow, 
and subsequent theoretical work established that the onset of instability marks a 
supercritical, or ‘soft ’, bifurcation from circular flow to Taylor’s vortices at the 
critical Taylor number (cf. Kogelman & DiPrima 1970). But in painstakingly careful 
experiments, Coles (1965) observed the gradual appearance of Taylor vortices as the 
Taylor number was raised, those a t  the ends of his apparatus being the first to 
become detectable a t  the resolution he achieved, so that base flow in reality is weakly 
three-dimensional. 

Benjamin (1978) explored a t  length the relevance of the theory of imperfect 
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FIGURE 9. Photographs of the end waves present on the experimental apparatus which propagate 
towards the gap centre region even at low capillary number: H,JR = 0.005; (a) Cu = 0.25, 
(b )  Cu = 0.4, ( e )  Cu = 0.5. 
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bifurcation to these observations and further ones that Coles made. Among other 
findings that may also be pertinent to ribbing in film-splitting, there are three main 
points. First, the appearance of cells is a smooth process as the Taylor number is 
increased ; there is no precise critical value below which cells are absent and above 
which cells appear. If the annulus is sufficiently long to include many cellular 
wavelengths the development of cells is rapid over a narrow range of Taylor number 
close to the theoretical critical value. Second, there can be hysteresis in the critical 
range and in the number of vortices at  certain lengths of the apparatus, again when 
the apparatus is short enough. Third, at  Taylor numbers substantially greater than 
the critical range the end effects can spawn a great multiplicity of flow states, e.g. 
metastable steady states with different numbers of vortices arrayed in the fixed 
length of the apparatus (Benjamin & Mullin 1981). 

By analogy similar phenomena can be expected to accompany ribbing in film- 
splitting. Most significant is the virtual certainty that when the rolls are shorter. than 
about ten times the wavelength of the ribs that would appear between infinitely long 
rolls, the wavelengths and growth with capillary number of the ribs actually present 
will be sensitive to roll length. The experiments reported above were conducted in an 
apparatus whose rolls proved to be about ten times the wavelength of the ribs that 
appeared in most instances. So the results probably apply to film-splitting between 
longer rolls. Another significant point in this analogy is that a multiplicity of flow 
states, some of them time-dependent, are observed at capillary numbers substantially 
higher than the critical value. These flow states correspond to varying numbers of 
ribs attempting to fit along the fixed length of the apparatus. 

A further likelihood is that the influence of the end effect on the imperfect 
bifurcation to ribbing - the degree of imperfection, so to say - can be lessened by 
altering conditions at the roll ends. Certainly the edge meniscus can be virtually 
eliminated by installing end dams, plates or wedges mounted perpendicular to the 
roll axes near the roll ends to eliminate transverse flow off the ends of the rolls. The 
amplitude of the standing wave near each end of the roll might also be reduced by 
locally interferring upstream of it, that is by reducing and redistributing the flow 
carried into the gap behind it. These measures were not tested carefully in this work. 

5. Summary 
Symmetric film-splitting of Newtonian liquid between half-submerged cylinders of 

the same radius, counter-rotating at  equal speeds, is a seemingly two-dimensional 
steady flow below a certain critical range of cylinder surface velocity, given the 
radius and separation of the cylinders, the viscosity, surface tension, and density of 
the liquid. However, the flow is distinctly three-dimensional at  the ends of the 
cylinders, or rolls. 

The three-dimensionality of the flow is first manifested, as the rolls are speeded up, 
in a single detectable rib at  each end of the rolls. As the speed approaches the critical 
range, more and more of a family of ribs between the two ends grow to detectable 
amplitude. What is detectable depends strongly on the means of illuminating, 
magnifying, and viewing the film-splitting meniscus deep within the narrow gap 
between the rolls. In the critical range of roll speed the interior members of the family 
approach uniformity of amplitude and their amplitude rises sharply with roll speed. 
This is the onset of practically important ribbing. As the rolls are slowed down, the 
amplitude of the ribs falls equally sharply in the critical range : there is no discernible 
hysteresis. 
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Theoretical analysis brings out that the governing parameters are the capillary 
number, i.e. roll surface velocity times liquid viscosity divided by the liquid’s surface 
tension ; the ratio of gap to roll diameter ; and secondarily a Reynolds number that 
measures the relevance of liquid inertia and a Stokes number that measures the effect 
of gravity on the viscous free-surface flow. Though the flow is three-dimensional, 
such analysis is formidable. It is efficient to analyse first the two-dimensional flow as 
if there were no end effects, and then to analyse the stability of that base flow to 
ribbing, or bifurcation to  a three-dimensional state. 

The pertinent Navier-Stokes systems of equations for both the base flow and its 
stability are solved via finite-element analysis. The solutions yield predictions of a 
critical capillary number a t  which the two-dimensional flow of smooth film-splitting 
becomes unstable with respect to a particular wavelength of ribbing. Ruschak’s 
earlier predictions by means of an approximate analysis prove very close, except 
when the ratio of gap to roll diameter climbs past 0.01. The predicted critical 
capillary number falls within the critical range of capillary number in which the 
transition to  easily detectable ribs has been observed in experiments. 

The relationship of the three-dimensional reality as revealed by the new 
observations to  the theoretical predictions indicates that  the bifurcation is imperfect 
and is made so by the end effect, much in the same manner as the onset of Taylor 
cells in circular Couette flow. I n  other words, the base flow is inherently three- 
dimensional and ribbed, although below the critical range of capillary number the 
amplitude of ribbing may be so small as to be unimportant, or imperceptible, or even 
totally undetectable because i t  is masked by the effects of other small perturbing 
influences (e.g. roll runout or vibration). Nevertheless, there are aspects of the flow 
field, such as flow rate and average film thickness, pressure distribution, and average 
meniscus location, that  can be accurately modelled as two-dimensional, even if the 
capillary number is above the critical range. Moreover, the critical range of capillary 
number can be usefully estimated from the theoretically predicted instability of 
strictly two-dimensional flow, since the small-amplitude ribs detected below this 
range would probably not be discernible on a finished coated product. 

To conclude, there evidently is no precisely definable loss of stability, or onset of 
ribbing, in symmetric film-splitting between counter-rotating cylinders of finite 
length. From the standpoint of science the issue is one of three-dimensional effects 
in viscous free-surface flow, and stands as a challenge to theory and physical 
understanding. From the standpoint of practical applications the issue is what 
amplitude of ribbing is tolerable and how can design and operating conditions be 
chosen so that amplitude is not exceeded while other desired process objectives are 
achieved. 

Further understanding of the precise nature of the ribbing instability will require 
much more sophisticated computation and experiment than presented here. A highly 
accurate quantitative measurement of the complete free-surface profile in this flow 
is necessary. Future computations need to be fully three-dimensional in order to 
accurately incorporate these important end effects. Owing to advances in computer 
technology, such computations are now becoming feasible. 

The authors are indebted to K. J. Ruschak, S. F. Kistler and N. E. Bixler for 
many helpful discussions. Special thanks are due to K. N. Christodoulou for 
correcting an elusive error in the derivation of the finite-element equations. R. D. 
Baune assisted with much of the experimental work. This work was supported by the 
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3M Company. Computer time was supplied by the University of Minnesota Computer 
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Appendix 
The following is a summary of the asymmetric eigenproblem. The notation 

assumes 9-node quadrilateral elements with mixed interpolation, where q5i are 
biquadratic basis functions for the representation of velocities and the isoparametric 
map, and pc." are bilinear basis functions for the representation of the pressure. 
Element nodes are numbered such that nodes 3, 6, 9 define the free surface (7 = 1, 
when present). Superscripts run from 1 to 9 for momentum equations, 1 to  4 for 
continuity equations, and 1 to 3 for kinematic equations. Subscripts run from 1 to 
9 for velocity derivatives, 1 to 4 for pressure derivatives, and 1 to 3 for free surface 
derivatives. 

The generalized asymmetric eigenproblem can be written as 

PMq = Jq, 

where q is the column vector [u', v', w',p', h'IT, M is the mass matrix M = [ c  0 

0 
0 

and J is the Jacobian matrix 

0 0  
0 0  
0 0  
0 0  
0 0  

0 

I], 0 

Mk 

J =  

The lone 3 x 3 mass matrix contribution from each element under the free surface 
arises from the kinematic equation integrated over the free surface : 
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The Jacobian matrix has many terms. They are summarized below. 
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Kinematic equation 

Continuity equation 

x-momentum equation 

y-momentum equation 

%-momentum equation 
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Momentum equations ~ free-surface derivatives 

Momentum boundary integral over free surface 

where g is defined by g = x;+ ys". 

These free-surface derivatives are computed by the chain rule and the isoparametric 
mapping, for example : 

xi = Cxi$E, I J I  = x ~ Y ~ - x ~ Y E ,  
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